
LEX - A lexical analyser generator 1
DECUS C LANGUAGE SYSTEM

LEX
A lexical Analyser Generator

by

Charles H. Forsyth

University of Waterloo
Waterloo, Ontario, N2L 3G1

Canada

Revised by

Robert B. Denny & Martin Minow

Adapted for the Macintosh
Maarten Meijer, 90/06/19,

Using THINK C 4.0 by Symantec Corp.

LEX transforms a regular-expression grammar and associated action routines into a C function
and set of tables, yielding a table-driven lexical analyser which manages to be compact and
rapid.

These notes are formatted for A4, reformat if using a different paper size.

DECUS Structured Languages SIG
Version of 30-Oct-82
Copyright (C) 1978, Charles H. Forsyth
Modifications Copyright (C) 1980, 1982, DECUS
Modifications Copyright (C) 1990, Maarten Meijer

General permission to copy or modify, but not for profit, is hereby granted, provided that the above copyright
notice is included and reference made to the fact that reproduction privileges were granted by DECUS.

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation or by DECUS.

Neither Digital Equipment Corporation, DECUS, nor the authors assume any responsibility for the use or
reliability of this document or the described software.

This software is made available without any support whatsoever. The person responsible for an implementation of
this system should expect to have to understand and modify the source code if any problems are encountered in
implementing or maintaining the compiler or its run-time library. The DECUS 'Structured Languages Special
Interest Group' is the primary focus for communication among users of this software.

UNIX is a trademark of Bell Telephone Laboratories. RSX, RSTS/E, RT-11 and VMS are trademarks of Digital
Equipment Corporation.

THINK C is a trademark of Symantec Corporation , Macintosh is a trademark of Apple Computer, Inc.

APPENDIX A 1

LEX - A lexical analyser generator 2
Table of Contents

Table of Contents1
1.0 Introduction 2
2.0 The Lex Language 2
2.1 Elementary Things 2
2.2 Putting Things Together 3
2.3 The General Form of Lex Programs 4
2.4 Auxiliary Definitions 4
2.5 Translations 5
2.5.1 Numbers and Values 5
2.6 Declaration Sections 6
3.0 Using Lex from C 6
3.1 The Function yylex() 6
3.2 Serial Re-Use of yylex() 7
3.3 The Lex Table File 7
3.4 Analyzers Which Don't Use "Standard I/O" 7
3.5 Operating LEX 8
4.0 The Lex Library 9
4.0.1 Comment -- skip over a comment 10
4.0.2 Gettoken -- obtain a copy of token 10
4.0.3 Integ -- long integer, any base 10
4.0.4 Lexchar -- steal character 10
4.0.5 Lexecho -- write token to a file (STDIO ONLY) 11
4.0.6 Lexgetc -- supply characters to yylex (STDIO ONLY) 11
4.0.7 Lexlength -- return length of a token 11
4.0.8 Lexpeek -- examine character 11
4.0.9 Lexswitch -- switch scanning tables 11
4.0.10 Llinit -- Reinitialize yylex() 12
4.0.11 Mapch -- Handle C escapes within strings (STDIO ONLY) 12
4.0.12 Token -- get pointer to token 12
5.0 Error Detection and Recovery 12
6.0 Ambiguity and Look-ahead 13
6.1 Resolving Ambiguities13
6.2 Look-ahead 14
7.0 Multiple Scanning Tables 15
7.1 Creation of a Processor 15
8.0 Conclusion 15
9.0 Acknowledgements 16
LEX SOURCE GRAMMAR 17
SOME SMALL EXAMPLES 18
B.1 A Complete Command 18
B.2 Interactive Lexical Analysis 20

APPENDIX A 2

LEX - A lexical analyser generator 3
1.0 Introduction

A computer program often has an input stream which is composed of small elements, such as a stream of
characters, and which it would like to convert to larger elements in order to process the data conveniently. A
compiler is a common example of such a program: it reads a stream of characters forming a program, and would
like to turn this sequence of characters into a sequence of larger items, namely identifiers, numbers, and operators,
for parsing. In a compiler, the procedures which do this are collectively called the lexical analyser, or scanner; this
terminology will be used more generally here.
It may happen that the speed with which this transformation is done will noticeably affect the speed at which the
rest of the program operates. It is certainly true that although such code is rarely difficult to write, writing and
debugging it is both tedious, and time-consuming, and one typically would rather spend the time on the hard parts
of the program. It is also true that while certain transformations are easily thought of, they are often hard to
express succinctly in the usual general-purpose programming languages (eg, the description of a floating-point
number).
LEX is a program which tries to give a programmer a good deal of help in this, by writing large parts of the
lexical analyser automatically, based on a description supplied by the programmer of the items to be recognised
(which are known as tokens), as patterns of the more basic elements of the input stream. The LEX description is
very much a special-purpose language for writing lexical analysers, and LEX is then simply a translator for this
language. The LEX language is easy to write, and the resulting processor is compact and fast running.
The purpose of a LEX program is to read an input stream, and recognise tokens. As the lexical analyser will
usually exist as a subroutine in a larger set of programs, it will return a "token number", which indicates which
token was found, and possibly a "token value", which provides more detailed information about the token (eg, a
copy of the token itself, or an index into a symbol table). This need not be the only possibility; a LEX program is
often a good description of the structure of the whole computation, and in such a case, the lexical analyser might
choose to call other routines to perform the necessary actions whenever a particular token is recognised, without
reference to its own caller.

2.0 The Lex Language

LEX transforms a regular-expression grammar into a deterministic finite-state
automaton that recognizes that grammar. Each rule of the grammar is associated
with an action which is to be performed when that rule successfully matches
some part of the input data.
Because of the nature of regular expression grammars, certain language
constructions cannot be recognized by LEX programs.
Specifically, expressions with balanced parentheses cannot be recognized. This
means that LEX cannot be used to recognize all Fortran keywords as some (DO, IF,
and FORMAT, for example) require elaborate recognition to distinguish between ambiguous constructions.

2.1 Elementary Things

Strings, characters, sets of characters called character classes, and operators to
form these into patterns, are the fundamental elements of the LEX language.
A string is a sequence of characters, not including newline, enclosed in quotes, or
apostrophes. Within a string, the following escape sequences (which are those of
the C language) allow any 8-bit character to be represented, including the escape
character, quotes, and newlines:

\n NL (012)
\r CR (015)
\b BS (010)
\t TAB (011)
\" "
\' '
\c c

APPENDIX A 3

LEX - A lexical analyser generator 4
\\ \
\NNN (NNN)

APPENDIX A 4

LEX - A lexical analyser generator 5

where NNN is a number in octal, and c is any printable character. A string may be continued across a line by
writing the escape character before the newline.
Outside a string, a sequence of upper-case letters stands for a sequence of the equivalent lower-case letters, while a
sequence of lower-case letters is taken as the name of a LEX expression, and handled specially, as described
below. These conventions make the use of named expressions and the description of lower-case keywords (the
usual case on Unix) fairly convenient. Keywords in case-independent languages, such as Fortran, require
additional effort to match, as will be noted.

An Ascii character other than one of

() {} [* | = ; % / \ ' " -

may be used in LEX to stand for itself.

A sequence of characters enclosed by brackets ('[' and ']') forms a character class, which stands for all those
characters within the brackets. If a circumflex ('^') follows the opening bracket, then the class will instead stand
for all those characters but those inside the brackets. The escapes used in strings may be used in character classes
as well.
Within a character class, the construction "A-B" (where "A" and "B" are arbitrary characters) stands for the
range of characters between "A" and "B" inclusive.
For example,

"ABC" matches "abc"

"[ABC]" matches "A" or "B" or "C"

"[A-Za-z0-9]" matches all letters and digits

Case-independent keyword recognition may be described by using auxiliary definitions to define expressions that
match either case. For example,

a = [Aa];
b = [Bb];
...
z = [Zz];
%%
d o Matches "DO", "do", "Do", or "dO"

2.2 Putting Things Together

Several operators are provided to allow construction of a type of pattern called a
regular expression. Such expressions can be implemented as finite-state automata
(without memory or stacks). A reference to an "occurrence" of a regular
expression is generally taken to mean an occurrence of any string matched by that
regular expression. The operators are presented in order of decreasing priority. In
all cases, operators work on either strings or character classes, or on other regular
expressions.
Any string or character class forms a regular expression which matches whatever
the string or character class stands for (as described above).
The operator '*' applied following a regular expression forms a new regular expression which matches an
arbitrary number (ie, zero or more) of adjacent occurrences of the first regular expression. The operation is often
referred to as (Kleene) closure.
The operation of concatenation of two regular expressions is expressed simply by writing the regular expressions
adjacent to each other. The resulting regular expression matches any occurrence of the first regular expression
followed directly by an occurrence of the second regular expression.
The operator '|', alternation, written between two regular expressions forms a regular expression which matches

APPENDIX A 5

LEX - A lexical analyser generator 6
an occurrence of the first regular expression or an occurrence of the second regular expression.

APPENDIX A 6

LEX - A lexical analyser generator 7
Any regular expression may be enclosed in parentheses to cause the priority of operators to be overridden in the
usual manner.
A few examples should help to make all of this clear:

"[0-9]*" matches a (possibly empty) sequence of digits.

"[A-Za-z_$][A-Za-z0-9_$]*"
matches a C identifier.

"([A-Za-z_$]|[0-9])*"
matches a C identifier, or a sequence of digits, or a sequence of letters
and digits intermixed, or nothing.

2.3 The General Form of Lex Programs

A LEX source input file consists of three sections: a section containing auxiliary
definitions, a section containing translations, and a section containing programs.
Throughout a LEX program, spaces, tabs, and newlines may be used freely, and
PL/1-style comments:

/* ... anything but '*/' ... */

may be used, and are treated as a space.

The auxiliary definition section must be present, separated from following sections by the two-character sequence
'%%', but may be empty. This section allows definition of named regular expressions, which provide the useful
ability to use names of regular expressions in the translation section, in place of common sub-expressions, or to
make that section more readable.
The translation section follows the '%%' sequence, and contains regular expressions paired with actions which
describe what the lexical analyser should do when it discovers an occurrence of a given regular expression in its
input stream.
The program section may be omitted; if it is present it must be separated from the translation section by the '%%'
sequence. If present, it may contain anything in general, as it is simply tacked on to the end of the LEX output file.
The style of this layout will be familiar to users of Yacc. As LEX is often used with that processor, it seemed
reasonable to keep to a similar format.

2.4 Auxiliary Definitions

Given the set of regular expressions forming a complete syntax, there are often
common sub-expressions. LEX allows these to be named, defined but once, and
referred to by name in any subsequent regular expression. Note that definition
must precede use. A definition has the form:

expression_name = regular_expression ;

where a name is composed of a lower-case letter followed by a sequence string of letters and digits, and where an
underscore is considered a letter. For example,

digit = [0-9];
letter = [a-zA-Z];
name = letter(letter|digit)*;

The semicolon is needed to resolve some ambiguities in the LEX syntax.

Three auxiliary definitions have special meaning to LEX: "break", "illegal", and "ignore." They are
all defined as character classes ("break = [,.?]", for example) and are used as follows:

APPENDIX A 7

LEX - A lexical analyser generator 8
break An input token will always terminate if a member of the "break" class

is scanned.

APPENDIX A 8

LEX - A lexical analyser generator 9

illegal The "illegal" class allows simplification of error detection, as
will be described in a later section. If this class is defined, and the lexical
analyser stops at a character that "cannot" occur in its present context, the
analyser will output a suitable error message and ignore the offender.

ignore This class defines a set of characters that are ignored by the analyser's
input routine.

2.5 Translations

One would like to provide a description of the action to be taken when a
particular sequence of input characters has been matched by a given regular
expression. The kind of action taken might vary considerably, depending upon the
application. In a compiler, typical actions are: enter an identifer into a symbol
table, read and store a string, or return a particular token to the parser. In text
processing, one might wish to reproduce most of the input stream on an output
stream unchanged, making substitutions when a particular sequence of characters
is found. In general, it is hard to predict what form the action might take, and so,
in LEX the nature of the action is left to the user, by allowing specification, for
each regular expression of interest, C-language code to be executed when a string
matching that expression is discovered by the driving program of the lexical
analyser. An action, together with its regular expression, is called a translation,
and has the format:

regular_expression { action }

All of this may be spread across several lines. The action may be empty, but the braces must appear.
Earlier, it was argued that most general-purpose languages are inappropriate for writing lexical analysers, and it is
important to see that the subsequent use of such a language to form the actions is not a contradiction. Most
languages are fairly good at expressing the actions described above (symbol table manipulation, writing character
strings, and such). Leaving this part of the lexical analyser to those languages therefore not only makes sense, but
also ensures that decisions by the writer of the lexical analyser generator will not unduly cramp the user's style.
However, general-purpose languages do not as a rule provide inexpensive pattern matching facilities, or input
description formats, appropriate for describing or structuring a lexical analyser.
Allowing a user to provide his own code is not really enough, as he will need some help from LEX to obtain a
copy of, or a pointer to, the current token, if nothing else. LEX provides a library of C functions which may be
called to obtain controlled access to some of the data structures used by the driving programs of the lexical
analyser. These are described in a later section.

2.5.1 Numbers and Values

Typically, a lexical analyser will return a value to its caller indicating which token has been
found. Within an action, this is done by writing a C return statement, which returns the
appropriate value:

BEGIN {
return(T_BEGIN);
}

name {
lookup(token(NULL));
return(T_NAME);
}

APPENDIX A 9

LEX - A lexical analyser generator 10
"/" {

return('/');
}

Note that function lookup() is provided by the user program.

APPENDIX A 10

LEX - A lexical analyser generator 11
In many cases, other information must be supplied to its caller by the scanner. When an identifier is recognised,
for example, both a pointer to a symbol-table entry, and the token number T_NAME must be returned, yet the C
return statement can return but a single value. Yacc has a similar problem, and so its lexical analyser sets an
external word 'yylval' to the token value, while the token number is returned by the scanner. LEX uses the
external 'yylval' (to be compatible), but, to make LEX programs more readable when used alone, the name
'lexval' is set by a #define statement to 'yylval'. For example,

name {
lexval = lookup(token(NULL));
return(T_NAME);
}

Certain token numbers are treated specially; these are automatically defined as manifests (see section 3.2) by LEX,
and all begin with the sequence 'LEX...' so as not to clash with the user's own names. There are two such tokens
defined at present:

LEXSKIP When returned by a user's action routine, LEXSKIP causes the lexical
analyser to ignore the current token (ie, it does not inform the parser of its
presence), and to look instead for a new token. This may be used when a
comment sequence has been discovered, and discarded. It is also useful when
the action routine completes processing of the token. See the discussion of the
comment() library function for an example of its usage.

LEXERR This is returned by the lexical analyser (function yylex()) when an
unrecognizable inputsequence has been detected. By default, LEXERR is 256.
This the same as the yacc error value.

To summarise, the token number is set by the action with a return statement, and the token value (ie, auxiliary
information) is set by assigning this value to the external integer 'lexval'.

2.6 Declaration Sections

Declarations in the language of the actions may be included in both the auxiliary
definition section and in the translation section. In the former case, these
declarations will be external to the lexical analyser, and in the latter case, they
will be local to the lexical analyser (ie, static, or automatic storage). Declaration sections
consist of a sequence of declarations surrounded by the special bracketing sequences '%{' and '%}' (as in
Yacc). The characters within these brackets are copied unchanged into the appropriate spots in the lexical analyser
program that LEX writes. The examples in appendix A suggest how these might be used.

3.0 Using Lex from C

The present version of LEX is intended for use with C; and it is this usage which
will be described here.

3.1 The Function yylex()

The structure of LEX programs is influenced by what Yacc requires of its lexical
analyser.
To begin with, the lexical analyser must be named 'yylex', has no parameters, and is
expected to return a token number, where that number is determined by Yacc. The token number for an Ascii
character is its Ascii value (ie, its value as a C character constant). Named tokens, defined in yacc '%token'
statements, have a number above 256, with the particular number accessible through a Yacc-produced #define
of the given token name as its number. Yacc also allows 'yylex' to pass a value to the Yacc action routines, by
assigning that value to the external 'yylval'.
LEX thus provides a lexical analyser function named 'yylex', which interprets tables constructed by the LEX

APPENDIX A 11

LEX - A lexical analyser generator 12
program returning the token number returned by the actions it performs. Values assigned to lexval are available
in 'yylval', so that use with Yacc is straightforward.
A value of zero is returned by 'yylex' at end-of-file, and in the absence of a return statement in an action, a
non-zero value is returned. If computation is performed entirely by the lexical analyser, then a suitable main
program would be

APPENDIX A 12

LEX - A lexical analyser generator 13

main()
{
while (yylex()) ;
}

3.2 Serial Re-Use of yylex()

The yylex() function contains several variables which are statically initialized at compile time. Once
yylex() sees an EOF (-1) input character, it will continue to return NULL. If yylex() is to be used inside a
loop which processes multiple files, it must be re-initialized at the beginning of each new file with a call to the
LEX library routine llinit(). For example (slightly extending the previous example):

main()
{
getfilelist();
for(file = first; file != last; file = next)

{
llinit();
while (yylex());
}

printf("All files done\n");
}

The call to llinit() is unnecessary if yylex() is to process only one file, or is kept from seeing an EOF input
character.

3.3 The Lex Table File

In the absence of instructions to the contrary (see below), LEX reads a given
LEX language file, (from the standard input, if an input file has not been
specified) and produces a C program file 'lextab.c' which largely consists of
tables which are then interpreted by 'yylex()' (which is in the LEX library). The actions supplied
by the user in each translation are combined with a switch statement into a single function, which is called by the
table interpreter when a particular token is found. The contents of the program section of the LEX file are added at
the end of the output file (lextab.c by default). Normally, LEX also inserts the lines

#include <stdio.h>
#include <lex.h>

at the top of the file; this causes declarations required by the standard I/O library and by LEX to be included when
the C program is compiled.

3.4 Analyzers Which Don't Use "Standard I/O"

With the current release, LEX supports the generation of analyzers which may be
incorporated into programs which do not use the "standard I/O" library. By
setting the "-s" switch, as shown below, the generation of the "#include
<stdio.h>" line is supressed. All references to standard I/O specific files and stdio.h have been removed from
the LEX library (described in a later section), with the exception of lexgetc(), lexerror(), mapch() and
lexecho(), which are standard I/O dependent.
The declaration of yylex()'s input file iov pointer "lexin" now resides in LEXGET.C (lexgetc()). The
code which defaults lexin to stdin has been moved from yylex() to the table file. yylex() now calls the
routine llstin(), which is generated into the table file. There are no longer any hardwired references to the
variable "lextab", the default table name. Instead, LEX generates a call to lexswitch() in llstin(),
which initializes yylex() to use the table whose name was given in a "-t" or "-e" option in LEX's command

APPENDIX A 13

LEX - A lexical analyser generator 14
line. If neither was given, the default name "lextab" is used. Once the initial table has been set up, further
automatic calls to lexswitch() are supressed, allowing the user to manually switch tables as before.

APPENDIX A 14

LEX - A lexical analyser generator 15
In addition, If the "-s" switch is not given (i.e., normal use with standard I/O), llstin() defaults lexin to
stdin. If "-s" is given, llstin() is generated to do the lexswitch() mentioned above only. In any case,
yylex() contains no references to the standard I/O system.
What all of this means is that under normal operation, you won't notice any change in LEX's characteristics. In
addition, you may use the "-e" ("easy") switch, which will generate a C output file and LEX tables which
(conveniently) have the same name as the input file, and everything will get set up automagically. If you specify
the "-s" switch, the table file will contain no references to the standard I/O package, and you may use any of the
lexlib routines except lexgetc(), lexerror(), mapch() or lexecho().
Don't forget that you must supply your own startup routine "$$main" if you do not want the standard I/O library.
With a bit of care in this regard, it will be possible to link your program with the C library without dragging in any
I/O modules. This prevents your having to build another library in order to access non-I/O library functions. Just
make the reference to the C library the last one given to the linker or taskbuilder so that only those routines which
have not already been found are pulled from CLIB.

NOTE
Programs that use LEX-generated analyzers and do not use the standard I/O package must supply their own
lexgetc() and lexerror() routines. Failure to do so will result in undefined globals.

3.5 Operating LEX

Please note that all following information has been made redundant on the
Macintosh by the frontend program MacLex APPL that writes out a ‘TEXT’ file
called Lex_args. A short summary:
Startup MacLex APPL, this creates the options file Lex_args and launches LEX.
This allows the LEX program to be run again with the same arguments. Examine
the file Lex_args after some runs with different arguments to examine the
details. Lex tables can be saved in resources of type 'LTAB', a general setup
'LEXT' is also created. By typing in an existing name, resources can be merged
(very handy with THINK C), all previous versions are removed. The ID's are
generated uniquely (I hope) from the lextab table name provided..
The minimizer doesn't work yet, but possible optimizations are shown in the info name.lex.out file, as are the
states of the NFA's and DFA's. By the following defines all state numbers are printed to stdout:

#define _lmovi _lmovi_debug
#define _lmovb _lmovb_debug

Default extensions can be changed by changing the 'defaults' 'STR#' resource in MacLex APPL.
Please note that LEX and MacLex APPL must be in the same folder!! Do not change the name of the LEX
program!! You must recompile the library yourself.
FUll documentation will follow a.s.a.p.,
Have fun,
Maarten Meijer.

PS:
The rest of this section can be ignored.
LEX normally reads the grammar from the standard input, writing the C program to the file 'lextab.c'. It may be
further controlled by using the following flags upon invocation:

-i filename The grammar is read from 'filename'.

-o filename The analyser is written to 'filename'.

-t tablename The default finite-state automaton is named lextab (and it is, by
default, written to file 'lextab.c'). The -t switch causes the internal tables to be
named 'tablename' and, if the -o switch is not given, written to file
'tablename.c'. This is necessary if the processor-switching capabilities
described in a later section are to be used.

APPENDIX A 15

LEX - A lexical analyser generator 16

-e name "Easy" command line. "-e name" is equivalent to typing

-i name.LXI -o name.C -t name

Do not include device names or file extensions on the "easy" command line.

-v [filename] Internal state information is written to 'filename’. If not present, state
information is written to file 'lex.out.'

-d Enable various debugging printouts.

-s Generate analyzer without references to standard I/O

The command line for compilation of the table file should contain no surprises:

cc -c -O lextab.c (on Unix)
xcc lextab -a (on Dec operating systems)

but when one is producing the running program, one must be careful to include the necessary libraries. On Unix,
the proper sequence is:

cc userprog.o lextab.o -ll -lS

The '-ll' causes the LEX library (described below) to be searched, and the '-lS' causes the Standard I/O library to be
used; both libraries are required. If Yacc is used as well, the library '-ly' should be included before the '-ll'. The
actual order and content of the rest of the command line is determined by the user's own requirements.
If using the Decus C compiler, the lexical analyser built by LEX is linked with c:lexlib.
The complete process (assuming the Decus compiler running on RSTS/E in RT11 mode) is thus:

mcr lex -i grammar.lxi -o grammar.c ! Build analyser
cc grammar ! Compile the
as grammar ! grammar table
link out=in,grammar,c:lexlib,c:suport,c:clib/b:2000

4.0 The Lex Library

All programs using grammars generated by LEX must be linked together with the
LEX library. On Unix, this is '/lib/libl.a' (or '-ll' on the cc command line) and on
DEC operating systems, C:LEXLIB (LB:[1,1]LEX.OLB for RSX). It contains
routines which are either essential or merely useful to users of LEX. The
essential routines include a routine to obtain a copy of the current token, and a
routine to switch to a different set of scanning tables. Routines of the second,
useful, class perform functions which might well be written by the user himself,
but are there to save him the bother; including a routine to process various forms
of comments and a routine to transform numbers written in arbitrary bases. Both
sets of routines are expected to grow as LEX sees use.
Those functions which produce diagnostics do so by calling lexerror(), which is
called as
lexerror(string, arg1, ..., argN) and is expected to write its arguments (likely using the "remote
format" facility of the fprintf() function), followed by a newline, on some output stream. A lexerror()
function is included in the LEX library, but a user is free to include his own. The routine in the LEX library is
standard I/O specific.

NOTE
The VAX/VMS native C library does not support remote formats. The Lexerror function in the LEX library
conditionally compiles to support a call to lexerror() with only an error message string. Remote

APPENDIX A 16

LEX - A lexical analyser generator 17
formats are supported under Decus C. Learn to use them, they are very nice!

APPENDIX A 17

LEX - A lexical analyser generator 18

4.0.1 Comment -- skip over a comment

comment(delim)
char delim[];

Comment() may be called by a translation when the sequence of characters which mark the start of a comment
in the given syntax has been recognised by LEX. It takes a string which gives the sequence of characters which
mark the end of a comment, and skips over characters in the input stream until this sequence is found. Newlines
found while skipping characters cause the external 'yyline' to be incremented; an unexpected end-of-file
produces a suitable diagnostic. Thus, 'comment("*/")' matches C-style comments, and 'comment("\
n")' matches as-style comments. There are other methods of handling comments in LEX; the comment()
function is usually the best with regard to both space and time.

4.0.2 Gettoken -- obtain a copy of token

gettoken(buf, sizeof(buf))
char buf[];

Gettoken() takes the address of a character buffer, and its size in bytes, and copies the token most recently
matched by LEX into the buffer. A null byte is added to mark the end of the token in the buffer, but, as null bytes
are legitimate characters to LEX, the true length of the token is returned by gettoken().
For example, the following function calls lexlength() to obtain the length of a token. It then calls the storage
allocator to allocate sufficient storage for the token and copies the token into the allocated area.

char *
save()
/*
* Save current token, return a pointer to it
*/

{
register char *tbuffer;
register int len;
register char *tend;
extern char *token();
extern char *copy();

len = lexlength() + 1;
if (tbuffer = malloc(len)) == NULL)

error("No room for token");
gettoken(tbuffer, len);
return(tbuffer);
}

4.0.3 Integ -- long integer, any base

long
integ(nptr, base)
char *nptr;

Integ() converts the Ascii string at 'nptr' into a long integer, which it returns. Conversion stops at the first
non-digit, where the digits are taken from the class "[0-9a-zA-Z]" as limited by the given 'base'. Integ()
does not understand signs, nor are blanks or tabs allowed in the string.

4.0.4 Lexchar -- steal character

lexchar()

APPENDIX A 18

LEX - A lexical analyser generator 19
Lexchar() returns the next character from the LEX input stream. (This means that LEX will no longer see it.)
LEX uses a look-ahead buffer to handle complex languages, and this function takes this into account.

4.0.5 Lexecho -- write token to a file (STDIO ONLY)

lexecho(fp);
FILE *fp;

Lexecho() may be called by a LEX action routine to write the current token to a specified file.
NOTE
Programs using analyzers built with LEX's "-s" switch must supply their own lexecho() function if needed.

4.0.6 Lexgetc -- supply characters to yylex (STDIO ONLY)

lexgetc()

Lexgetc() is called by the lexical analyser to obtain characters from its input stream. The version in the library
is dependent on the standard I/O package, and is:

FILE *lexin; /* Declare iov address locally */
lexgetc()
{
return(getc(lexin));
}

If lexin is NULL when yylex() is entered, it will be assigned to stdin. This is done by yylex() calling
the function llstin(), which is generated in the table file. Unless the "-s" switch is given to LEX, the
llstin() function assigns lexin to stdin if lexin is NULL. If the "-s" switch was given, the llstin()
routine is a no-op. The user may provide his own version of lexgetc() to pre-process the data to the lexical
analyser. An example of this is shown in the appendix.

NOTE
Programs using analyzers built with LEX's "-s" switch must supply their own lexgetc() function, and
"lexin" has no meaning in this context.

4.0.7 Lexlength -- return length of a token

lexlength();

Lexlength() may be called by a LEX action routine to obtain the length of the current token in bytes. An
example of this is shown in the description of gettoken().

4.0.8 Lexpeek -- examine character

lexpeek()

Lexpeek() performs a function similar to that of Lexchar(), but does not have the side-effect of removing
the character from LEX's view.

4.0.9 Lexswitch -- switch scanning tables

struct lextab *
lexswitch(newtb)
struct lextab *newtb;

Lexswitch() is called to cause LEX to use a different scanning table; it returns a pointer to the one previously
in use. This facility is useful if certain objects of the language (eg, strings in C) have a fairly complicated structure
of their own which cannot be handled within the translation section of the LEX description of the larger language.

APPENDIX A 19

LEX - A lexical analyser generator 20

4.0.10 Llinit -- Reinitialize yylex()

llinit()

Llinit() is a function which resets the state of yylex() to it's cold-start condition. Several of yylex()'s
variables are initialized at compile time, and must be reinitialized if it is to be serially re-used. An example of this
is where yylex() is repeatedly called inside a loop which processes multiple input files. Each time a new file is
started, llinit() must be called before the first call to yylex() for the new file.

4.0.11 Mapch -- Handle C escapes within strings (STDIO ONLY)

int mapch(delim, esc)
char delim;
char esc;

Mapch() is a function which handles C "escape" characters such as "\n" and "\nnn". It will scan off the
entire escape sequence and return the equivalent ASCII code as an integer. It is meant for use with YACC while
scanning quoted strings and character constants.
If it encounters EOF while scanning, it calls lexerror() to print an error message warning of "Unterminated
string". If a normal character is read, it returns the ASCII value. If "delim" (usually " or ') is read, it returns EOF.
If a newline (ASCII linefeed) is read, it increments the global "yyline" and calls itself recursively for the next
line of input. It may use the ungetc() function to back up in the input stream.

NOTE
This routine is very application-specific for use by LEX and YACC when they are working together. You
should read the code in MAPCH.C before using this function.

4.0.12 Token -- get pointer to token

char *
token(end_pointer)
char **end_pointer;

Token() locates the first byte of the current token and returns its address. It takes an argument which is either
NULL or a pointer to a character pointer; if the latter, that pointer is set to point to the byte after the last byte of the
current token. Token() is slightly faster, and more convenient than gettoken() for those cases where the
token is only one or two bytes long.

5.0 Error Detection and Recovery

If a character is detected in the input stream which cannot be added to the last-
matched string, and which cannot start a string, then that character is considered
illegal by LEX. LEX may be instructed to return a special 'error' token, or to
write a diagnostic with lexerror(). At present, the former is the default action.
The token LEXERR is a special value which is recognised by Yacc, and causes it to start its own error recovery. It
is defined by the header file lex.h for use by other programs.
Often, it makes more sense to simply type a suitable diagnostic, and continue by ignoring the offending character.
It is fairly easy to cause LEX to do this, by including the auxiliary definition:

illegal = [\0-\377];

which defines a character class "illegal" which is handled specially by LEX. If the character that is causing
the trouble is a member of that character class (and in the example, all characters are), then LEX will write a
diagnostic, and ignore it; otherwise, it will return the special token LEXERR
More comprehensive techniques may be added as they become apparent.

APPENDIX A 20

LEX - A lexical analyser generator 21

6.0 Ambiguity and Look-ahead

Many computer languages have ambiguous grammars in that an input token may
represent more than one logical entity. This section discusses the way in which
grammars built by LEX resolve ambiguous input, as well as a way for the
grammar to assign unique meaning to a token by looking ahead in the input
stream.

6.1 Resolving Ambiguities

A LEX program may be ambiguous, in the sense that a particular input string or
strings might be matched by the regular expression of more than one translation.
Consider,

[a-z] { putchar(*token(NULL)); }
aaa* { printf("abc"); }

in which the string 'aa' is matched by both regular expressions (twice by the first, and once by the second). Also,
the string 'aaaaaa' may be matched in many different ways. LEX has to decide somehow which actions should
be performed. (Alternatively, it could produce a diagnostic, and give up. As it happens, LEX never does this.)
Consider a second example,

letter = [a-z];
%%
A(letter)* { return(1); }
AB(letter)* { return(2); }

which attempts to distinguish sequences of letters that begin with 'a' from similar sequences that begin with
'ab'. These two examples illustrate two different kinds of ambiguity, and the following indicates how LEX
resolves these.
In the first example, it seems likely that the intent was to have both 'aa' and 'aaaaaa' perform the second
action, while all single letters 'a' cause the first action to be performed. LEX does this by ensuring that the
longest possible part of the input stream will be used to determine the match. Thus,

< { return(LESS); }
<= { return(LESSEQ); }

or

digit(digit)* { return(NUMBER); }
letter(letter|digit)*

{ return(NAME); }

would work as one might expect.
In the second example, the longest-string need not work. On the string "abb9", either action could apply, and so
another rule must be followed. This states that if, after the longest-string rule has been applied, there remains an
ambiguity, then the action which appears first in the LEX program file is to be performed. As the second example
is written, the second action will never be performed. It would have been written as:

letter = [a-z];
%%
AB(letter)* { return(1); }
A(letter)* { return(2); }

The two rules together completely determine a string.
At present, LEX produces no diagnostic in either case; it merely applies the rules and proceeds. In the case where
priority is given to the first-appearing rule, it might be a good idea to produce a diagnostic.

APPENDIX A 21

LEX - A lexical analyser generator 22

6.2 Look-ahead

Some facility for looking ahead in the input stream is sometimes required. (This
facility might also be regarded as a way for the programmer to more closely
control LEX's ambiguity resolution process.) For example, in C, a name followed
by "(" is to be contextually declared as an external function if it is otherwise undefined.
In Pascal, look-ahead is required to determine that

123..1234

is an integer 123, followed by the subrange symbol "..", followed by the integer 1234, and not simply two
real numbers run together.
In both of these cases, the desire is to look ahead in the input stream far enough to be able to make a decision, but
without losing tokens in the process.
A special form of regular expression is used to indicate look-ahead:

re1 '/' re2 '{' action '}'

where 're1' and 're2' are regular expressions. The slash is treated as concatenation for the purposes of
matching incoming characters; thus both 're1' and 're2' must match adjacently for the action to be
performed. 'Re1' indicates that part of the input string which is the token to be returned, while 're2' indicates
the context. The characters matched by 're2' will be re-read at the next call to yylex(), and broken into
tokens.
Note that you cannot write:

name = re1 / re2;

The look-ahead operator must be part of the rule. It is not valid in definitions.
In the first example, the look-ahead operator would be used as:

name / "(" {
if (name undefined)
declare name a global function;
}

name {
/* usual processing for identifiers */
}

In the second example, the range construction would be parsed as follows:

digit = [0-9];
int = digit(digit)*;
%%
int / ".." int { /* Start of a range */
".." int { /* End of a range */

Note that right-context is not sufficient to handle certain types of ambiguity, as is found in several places in the
Fortran language. For example,

do i = 1 Is an assignment statement
do i = 1, 4 Is a DO statement

It is not sufficient to use right-context scanning to look for the comma, as it may occur within a parenthesized sub-
expression:
do i = j(k,l) Is an assignment statement

In Fortran, similar problems exist for IF and FORMAT statements, as well as counted (Hollerith) string constants.
All of these require a more powerful grammar than is possible with LEX regular-expressions.

APPENDIX A 22

LEX - A lexical analyser generator 23

7.0 Multiple Scanning Tables; Processor Switching

Even a fairly simple syntax may be difficult, or impossible, to describe and
process with a single set of translations. An example of this may be found in C,
where strings, which are part of the language, have quite a different structure, and
in order to process them, either a function must be called which reads and parses
the input stream for itself, or some mechanism within LEX must be invoked to
cause a (usually massive) change of state.
LEX does provide such a facility, which is known, after AED, as 'processor
switching'. Yylex() locates its tables through a pointer; if one simply changes the pointer to point at a new
set of tables, one will have effected the required change of state. The LEX library function lexswitch(),
which is described elsewhere in this guide, arranges to do this; it also returns the old value of the pointer so that it
may be restored by a later call to Lexswitch(). Thus, scanning environments may be stacked, or not, as the
user requires.

7.1 Creation of a Processor

It should be clear that if all the tables produced by LEX from a user's translation
file have the same name, someone (the loader) is bound to object. Some method
must be provided to change the name of the table.
This is done by an option flag to the LEX command:

-t name

will cause the scanning table to be declared as

struct lextab name;

so that it may be passed to LEXswitch:

lexswitch(&name);

LEX also writes the program file to the file "name.c" rather than to "lextab.c."
NOTE
If you use the "easy" command line ("-e name") when running LEX, the output file and table names will
correspond nicely. Re-read the section on operating LEX for more details.

8.0 Conclusion

LEX seems to handle most lexical analysis tasks easily. Indeed, LEX may be
more generally used to write commands of a text-processing nature; an example
of such usage may be found in an appendix. LEX programs are far easier to write
than the equivalent C programs, and generally consume less space (although there
is an initial overhead for the more general table-interpreter program). The
encoding suggested in [4] achieves a reasonable compromise between table size,
and scanning speed. Certainly lexical analysers are less tedious and time-
consuming to write.
It is expected that most change in the future will be through additions to the LEX
library. The LEX language may change slightly to accomodate common kinds of

APPENDIX A 23

LEX - A lexical analyser generator 24
processing (eg, break characters), or to extend its range of application. Neither
kind of change should affect existing LEX programs.
LEX produces tables and programs for the C language. The tables are in a very
simple (and stylised) format, and when LEX copies the action routines or the
program section, the code might as well be Fortran for all it cares. One could
write Unix filters to translate the very simple C format tables into other
languages, allowing LEX to be used with a larger number of languages, with
little extra development cost. This seems a likely future addition.
Because of the look-ahead necessary to implement the "longest string match"
rule, LEX is unsuitable for interactive programs whose overall structure is:

for (;;) {
prompt_user();
get_input();
process();

APPENDIX A 24

LEX - A lexical analyser generator 25
prnt_output();

}

If these are rewritten as LEX-generated grammars, the user will be confused by the fact the second input datum
must be entered before the first is processed. It is possible to solve this dilemna by rewriting function
lexgetc() to return an "end-of-line" character until processing is complete for that line. An example is shown
in the Appendix.

9.0 Acknowledgements

LEX is based on a processor of the same name at Bell Laboratories, which also
runs under Unix [3], and, more distantly, on AED-0 [1]. This version of LEX was
based on the description and suggestions of [4], although the implementation
differs significantly in a number of ways.
10.0 References

1. Johnson, W.L., et. al., "Automatic generation of efficient lexical analysers
using finite state techniques", CACM Vol. 11, No. 12, pp. 805-813, 1968.

2. Johnson, S.C., "Yacc -- Yet Another Compiler-Compiler", CSTR-32, Bell
Telephone Laboratories, Murray Hill, New Jersey, 1974.

3. Lesk, M.E., "Lex - a lexical analyser generator", CSTR-39, Bell Telephone
Laboratories, Murray Hill, New Jersey, 1975.

4. Aho, A.V., Ullman, J.D., Principles of Compiler Design,
Addison-Wesley, Don Mills, Ontario, 1977.

APPENDIX A 25

LEX - A lexical analyser generator 26
LEX SOURCE GRAMMAR

The following is a grammar of LEX programs which generally follows Bacus-
Naur conventions. In the rules, "||" stands for alternation (choose one or the
other). Other graphic text stands for itself. Several grammar elements have
special meaning:

<anything> Any text not including the following grammar
element (either a literal or end-of-file).

<nothing> Nothing -- used for optional rule elements.

<name> A variable name.

<char_class> A character class specifier.

<string> A string (text inclosed in '"').

<EOF> The end of the input file.

This grammar was abstracted from the Yacc grammar used to describe LEX.

program ::= aux_section trans_section
aux_section ::= auxiliaries %%

|| %%
auxiliaries ::= auxiliaries aux_def

|| aux_def
aux_def ::= name_def = reg_exp ;

|| %{ <anything> %}
name_def ::= <name>
reg_exp ::= <char_class>

|| <string>
|| <name>
|| reg_exp *
|| reg_exp | reg_exp
|| reg_exp reg_exp
|| (reg_exp)

trans_section ::= translations
|| <nothing>

translations ::= translations translation
|| translation

translation ::= pattern action
|| %{ <anything> %}
|| %% <anything> <EOF>

pattern ::= reg_exp / reg_exp
|| reg_exp

APPENDIX A 26

LEX - A lexical analyser generator 27
SOME SMALL EXAMPLES

The following example illustrates the use of the look-ahead operator, and various
other of the nuances of using LEX.

B.1 A Complete Command

The C programming language has had two different ways of writing its
assignment operators. The original method was to write a binary operator
immediately following the ordinary assignment operator, forming a compound
operator. Thus 'a =+ b' caused the value of 'a+b' to be assigned to 'a'. Similarly,
=- =/ =% =* =<< =>> =| =& =^

were written for the assignment operators corresponding to subtraction, division, modulus, multiplication, left
shift, right shift, logical OR, logical AND, and exclusive OR. In the current version of the language, the binary
operator is written to the left of the assignment operator, to remove potential ambiguity.
The LEX program "ctoc" is a filter which converts programs written in the older style into programs written in the
newer style. It uses the look-ahead operator, and the various dis-ambiguating rules to ensure that sequences like
a==-1 a=++b remain unchanged.
/*
* ctoc.lxi -- Convert old C operators to new C form
*
* Adapted from example in C. Forsythe's LEX manual.
*
* NOTE:
* Forsythe's program put an entire comment into the token
* buffer. Either define a huge token buffer for my typical
* monster comments, or filter text within comments as if
* it were real C code. This is what I did. So =+ inside
* a comment will get changed to +=, etc. Note tnat you
* may use the commen() function in LEXLIB if you want the
* comments eaten. I wanted 'em in the output.
* by
* Bob Denny
* 31-Feb-81
*/
%{
char tbuf[80]; /* Token buffer */
main()

{
while (yylex())
;
}

%}
any = [\0-\177];
nesc = [^\\];
nescquote = [^\\"];
nescapost = [^\\'];
schar = "\\" any | nescquote;
cchar = "\\" any | nescapost;
string = '"' schar* '"';
charcon = "'" cchar* "'";
%%
"=" (<< | >> | "*" | + | - | "/" | "%" | "&" | "|" | "^")

{
gettoken(tbuf, sizeof tbuf);
printf("%s=",tbuf+1);
}

/*
APPENDIX A 27

LEX - A lexical analyser generator 28
* The following will overflow the token buffer on any but a

APPENDIX A 28

LEX - A lexical analyser generator 29
* small comment:
*/
/*********
"/*" ([^*] | "*"[^/])* "*/"
{
lexecho(stdout);
}
**********/
[<=>!]"=" | "="[<>]

{
lexecho(stdout);
}

"=" / (++ | --)
{
lexecho(stdout);
}

charcon
{
lexecho(stdout);
}

string
{
lexecho(stdout);
}

[\0-\377]
{
lexecho(stdout);
}

Assuming the Decus compiler running on RSTS/E in RT11 mode, the above program would be built and executed
as follows:
mcr lex -i ctoc.lxi -o ctoc.c
cc ctoc/v
as ctoc/d
link ctoc=ctoc,c:lexlib,c:suport,c:clib/b:2000
mcr ctoc <old.c >new.c

APPENDIX A 29

LEX - A lexical analyser generator 30

B.2 Interactive Lexical Analysis

The following program reads words from the terminal, counting each as they are
entered. The interaction with the operator is "natural" in the sense that processing
for one line is complete before the next line is input. To implement this program,
it was necessary to include a special version of lexgetc() which returns <NULL> if the
current line has been completely transmitted to the parser. Because the parser must still have some look-ahead
context, it will return the "end-of-line" token twice at the beginning of processing. This required some additional
tests in the main program.

/*
* Count words -- interactively
*/
white = [\n\t]; /* End of a word */
eol = [\0]; /* End of input line */
any = [!-~]; /* All printing char's */
illegal = [\0-\377]; /* Skip over junk */
%{
char line[133];
char *linep = &line;
int iseof = 0;
int wordct = 0;
#define T_EOL 1
main()

{
register int i;
while ((i = yylex()) != 0) {

/*
* If the "end-of-line" token is
* returned AND we're really at
* the end of a line, read the
* next line. Note that T_EOL is
* returned twice when the program
* starts because of the nature of
* the look-ahead algorithms.
*/

if (i == T_EOL && !is_eof&& *linep == 0) {
printf("* ");
fflush(stdout);
getline();
}

}
printf("%d words\n", wordct);
}

%}
%%
any(any)* {
/*
* Write each word on a
* seperate output line.
*/

lexecho(stdout);
printf("\n");
wordct++;
return(LEXSKIP);
}

eol {
return(T_EOL);
}

white(white)* {
return(LEXSKIP);

APPENDIX A 30

LEX - A lexical analyser generator 31
}

%%

APPENDIX A 31

LEX - A lexical analyser generator 32
getline()
/*
* Read a line for lexgetc()
*/

{
is_eof = (fgets(line, sizeof line, stdin) == NULL);
linep = &line;
}

lexgetc()
/*
* Homemade lexgetc -- return zero while at the
* end of an input line or EOF at end of file. If
* more on this line, return the next byte.
*/

{
return((is_eof) ? EOF
: (*linep == 0) ? 0
: *linep++);
}

APPENDIX A 32

